IRGM Is a Common Target of RNA Viruses that Subvert the Autophagy Network
نویسندگان
چکیده
Autophagy is a conserved degradative pathway used as a host defense mechanism against intracellular pathogens. However, several viruses can evade or subvert autophagy to insure their own replication. Nevertheless, the molecular details of viral interaction with autophagy remain largely unknown. We have determined the ability of 83 proteins of several families of RNA viruses (Paramyxoviridae, Flaviviridae, Orthomyxoviridae, Retroviridae and Togaviridae), to interact with 44 human autophagy-associated proteins using yeast two-hybrid and bioinformatic analysis. We found that the autophagy network is highly targeted by RNA viruses. Although central to autophagy, targeted proteins have also a high number of connections with proteins of other cellular functions. Interestingly, immunity-associated GTPase family M (IRGM), the most targeted protein, was found to interact with the autophagy-associated proteins ATG5, ATG10, MAP1CL3C and SH3GLB1. Strikingly, reduction of IRGM expression using small interfering RNA impairs both Measles virus (MeV), Hepatitis C virus (HCV) and human immunodeficiency virus-1 (HIV-1)-induced autophagy and viral particle production. Moreover we found that the expression of IRGM-interacting MeV-C, HCV-NS3 or HIV-NEF proteins per se is sufficient to induce autophagy, through an IRGM dependent pathway. Our work reveals an unexpected role of IRGM in virus-induced autophagy and suggests that several different families of RNA viruses may use common strategies to manipulate autophagy to improve viral infectivity.
منابع مشابه
Hepatitis C virus triggers Golgi fragmentation and autophagy through the immunity-related GTPase M.
Positive-stranded RNA viruses, such as hepatitis C virus (HCV), assemble their viral replication complexes by remodeling host intracellular membranes to a membranous web. The precise composition of these replication complexes and the detailed mechanisms by which they are formed are incompletely understood. Here we show that the human immunity-related GTPase M (IRGM), known to contribute to auto...
متن کاملIRGM in autophagy and viral infections
Autophagy is a cell autonomous process allowing each individual cell to fight intracellular pathogens. Autophagy can destroy pathogens within the cytosol, and can elicit innate and adaptive immune responses against microorganisms. Nevertheless, numerous pathogens have developed molecular strategies enabling them to avoid or even exploit autophagy for their own benefit. IRGM (immunity-related GT...
متن کاملCoxsackievirus A16 Elicits Incomplete Autophagy Involving the mTOR and ERK Pathways
Autophagy is an important homeostatic process for the degradation of cytosolic proteins and organelles and has been reported to play an important role in cellular responses to pathogens and virus replication. However, the role of autophagy in Coxsackievirus A16 (CA16) infection and pathogenesis remains unknown. Here, we demonstrated that CA16 infection enhanced autophagosome formation, resultin...
متن کاملPicornavirus Subversion of the Autophagy Pathway
While autophagy has been shown to act as an anti-viral defense, the Picornaviridae avoid and, in many cases, subvert this pathway to promote their own replication. Evidence indicates that some picornaviruses hijack autophagy in order to induce autophagosome-like membrane structures for genomic RNA replication. Expression of picornavirus proteins can specifically induce the machinery of autophag...
متن کاملAssociation between Variants of the Autophagy Related Gene – IRGM and Susceptibility to Crohn’s Disease and Ulcerative Colitis: A Meta-Analysis
BACKGROUND Polymorphisms in immunity-related GTPase family M (IRGM) gene may be associated with inflammatory bowel disease (IBD) by affecting autophagy. However, the genetic association studies on three common variants in IRGM gene (rs13361189, rs4958847 and rs10065172) have shown inconsistent results. METHODOLOGY/ PRINCIPAL FINDINGS The PubMed and Embase were searched up to June 5, 2013 for ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2011